Serveur d'exploration sur la rapamycine et les champignons

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Kaposi's Sarcoma-Associated Herpesvirus Lytic Replication Interferes with mTORC1 Regulation of Autophagy and Viral Protein Synthesis.

Identifieur interne : 000307 ( Main/Exploration ); précédent : 000306; suivant : 000308

Kaposi's Sarcoma-Associated Herpesvirus Lytic Replication Interferes with mTORC1 Regulation of Autophagy and Viral Protein Synthesis.

Auteurs : Eric S. Pringle [Canada] ; Carolyn-Ann Robinson [Canada] ; Craig Mccormick [Canada]

Source :

RBID : pubmed:31375594

Descripteurs français

English descriptors

Abstract

Mechanistic target of rapamycin complex 1 (mTORC1) is a master regulator of cellular metabolism. In nutrient-rich environments, mTORC1 kinase activity stimulates protein synthesis to meet cellular anabolic demands. Under nutrient-poor conditions or under stress, mTORC1 is rapidly inhibited, global protein synthesis is arrested, and a cellular catabolic process known as autophagy is activated. Kaposi's sarcoma-associated herpesvirus (KSHV) encodes multiple proteins that stimulate mTORC1 activity or subvert autophagy, but precise roles for mTORC1 in different stages of KSHV infection remain incompletely understood. Here, we report that during latent and lytic stages of KSHV infection, chemical inhibition of mTORC1 caused eukaryotic initiation factor 4F (eIF4F) disassembly and diminished global protein synthesis, which indicated that mTORC1-mediated control of translation initiation was largely intact. We observed that mTORC1 was required for synthesis of the replication and transcription activator (RTA) lytic switch protein and reactivation from latency, but once early lytic gene expression had begun, mTORC1 was not required for genome replication, late gene expression, or the release of infectious progeny. Moreover, mTORC1 control of autophagy was dysregulated during lytic replication, whereby chemical inhibition of mTORC1 prevented ULK1 phosphorylation but did not affect autophagosome formation or rates of autophagic flux. Together, these findings suggest that mTORC1 is dispensable for viral protein synthesis and viral control of autophagy during lytic infection and that KSHV undermines mTORC1-dependent cellular processes during the lytic cycle to ensure efficient viral replication.IMPORTANCE All viruses require host cell machinery to synthesize viral proteins. A host cell protein complex known as mechanistic target of rapamycin complex 1 (mTORC1) is a master regulator of protein synthesis. Under nutrient-rich conditions, mTORC1 is active and promotes protein synthesis to meet cellular anabolic demands. Under nutrient-poor conditions or under stress, mTORC1 is rapidly inhibited, global protein synthesis is arrested, and a cellular catabolic process known as autophagy is activated. Kaposi's sarcoma-associated herpesvirus (KSHV) stimulates mTORC1 activity and utilizes host machinery to synthesize viral proteins. However, we discovered that mTORC1 activity was largely dispensable for viral protein synthesis, genome replication, and the release of infectious progeny. Likewise, during lytic replication, mTORC1 was no longer able to control autophagy. These findings suggest that KSHV undermines mTORC1-dependent cellular processes during the lytic cycle to ensure efficient viral replication.

DOI: 10.1128/JVI.00854-19
PubMed: 31375594
PubMed Central: PMC6803247


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Kaposi's Sarcoma-Associated Herpesvirus Lytic Replication Interferes with mTORC1 Regulation of Autophagy and Viral Protein Synthesis.</title>
<author>
<name sortKey="Pringle, Eric S" sort="Pringle, Eric S" uniqKey="Pringle E" first="Eric S" last="Pringle">Eric S. Pringle</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia</wicri:regionArea>
<wicri:noRegion>Nova Scotia</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Beatrice Hunter Cancer Research Institute, Halifax, Nova Scotia, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Beatrice Hunter Cancer Research Institute, Halifax, Nova Scotia</wicri:regionArea>
<wicri:noRegion>Nova Scotia</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Robinson, Carolyn Ann" sort="Robinson, Carolyn Ann" uniqKey="Robinson C" first="Carolyn-Ann" last="Robinson">Carolyn-Ann Robinson</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia</wicri:regionArea>
<wicri:noRegion>Nova Scotia</wicri:noRegion>
</affiliation>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Alberta</wicri:regionArea>
<orgName type="university">Université de Calgary</orgName>
<placeName>
<settlement type="city">Calgary</settlement>
<region type="state">Alberta</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Mccormick, Craig" sort="Mccormick, Craig" uniqKey="Mccormick C" first="Craig" last="Mccormick">Craig Mccormick</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada craig.mccormick@dal.ca.</nlm:affiliation>
<country wicri:rule="url">Canada</country>
<wicri:regionArea>Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia</wicri:regionArea>
<wicri:noRegion>Nova Scotia</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Beatrice Hunter Cancer Research Institute, Halifax, Nova Scotia, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Beatrice Hunter Cancer Research Institute, Halifax, Nova Scotia</wicri:regionArea>
<wicri:noRegion>Nova Scotia</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2019">2019</date>
<idno type="RBID">pubmed:31375594</idno>
<idno type="pmid">31375594</idno>
<idno type="doi">10.1128/JVI.00854-19</idno>
<idno type="pmc">PMC6803247</idno>
<idno type="wicri:Area/Main/Corpus">000222</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000222</idno>
<idno type="wicri:Area/Main/Curation">000222</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000222</idno>
<idno type="wicri:Area/Main/Exploration">000222</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Kaposi's Sarcoma-Associated Herpesvirus Lytic Replication Interferes with mTORC1 Regulation of Autophagy and Viral Protein Synthesis.</title>
<author>
<name sortKey="Pringle, Eric S" sort="Pringle, Eric S" uniqKey="Pringle E" first="Eric S" last="Pringle">Eric S. Pringle</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia</wicri:regionArea>
<wicri:noRegion>Nova Scotia</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Beatrice Hunter Cancer Research Institute, Halifax, Nova Scotia, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Beatrice Hunter Cancer Research Institute, Halifax, Nova Scotia</wicri:regionArea>
<wicri:noRegion>Nova Scotia</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Robinson, Carolyn Ann" sort="Robinson, Carolyn Ann" uniqKey="Robinson C" first="Carolyn-Ann" last="Robinson">Carolyn-Ann Robinson</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia</wicri:regionArea>
<wicri:noRegion>Nova Scotia</wicri:noRegion>
</affiliation>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Alberta</wicri:regionArea>
<orgName type="university">Université de Calgary</orgName>
<placeName>
<settlement type="city">Calgary</settlement>
<region type="state">Alberta</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Mccormick, Craig" sort="Mccormick, Craig" uniqKey="Mccormick C" first="Craig" last="Mccormick">Craig Mccormick</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada craig.mccormick@dal.ca.</nlm:affiliation>
<country wicri:rule="url">Canada</country>
<wicri:regionArea>Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia</wicri:regionArea>
<wicri:noRegion>Nova Scotia</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Beatrice Hunter Cancer Research Institute, Halifax, Nova Scotia, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Beatrice Hunter Cancer Research Institute, Halifax, Nova Scotia</wicri:regionArea>
<wicri:noRegion>Nova Scotia</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Journal of virology</title>
<idno type="eISSN">1098-5514</idno>
<imprint>
<date when="2019" type="published">2019</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Autophagy (drug effects)</term>
<term>Butyric Acid (pharmacology)</term>
<term>Cell Line (MeSH)</term>
<term>Eukaryotic Initiation Factor-4F (metabolism)</term>
<term>Herpesvirus 8, Human (physiology)</term>
<term>Host-Pathogen Interactions (MeSH)</term>
<term>Humans (MeSH)</term>
<term>Immediate-Early Proteins (metabolism)</term>
<term>Mechanistic Target of Rapamycin Complex 1 (antagonists & inhibitors)</term>
<term>Mechanistic Target of Rapamycin Complex 1 (metabolism)</term>
<term>Sarcoma, Kaposi (metabolism)</term>
<term>Sarcoma, Kaposi (pathology)</term>
<term>Sarcoma, Kaposi (virology)</term>
<term>Sirolimus (pharmacology)</term>
<term>Trans-Activators (metabolism)</term>
<term>Virion (metabolism)</term>
<term>Virus Activation (drug effects)</term>
<term>Virus Latency (drug effects)</term>
<term>Virus Replication (drug effects)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Acide butyrique (pharmacologie)</term>
<term>Activation virale (effets des médicaments et des substances chimiques)</term>
<term>Autophagie (effets des médicaments et des substances chimiques)</term>
<term>Complexe-1 cible mécanistique de la rapamycine (antagonistes et inhibiteurs)</term>
<term>Complexe-1 cible mécanistique de la rapamycine (métabolisme)</term>
<term>Facteur-4F d'initiation eucaryote (métabolisme)</term>
<term>Herpèsvirus humain de type 8 (physiologie)</term>
<term>Humains (MeSH)</term>
<term>Interactions hôte-pathogène (MeSH)</term>
<term>Latence virale (effets des médicaments et des substances chimiques)</term>
<term>Lignée cellulaire (MeSH)</term>
<term>Protéines précoces immédiates (métabolisme)</term>
<term>Réplication virale (effets des médicaments et des substances chimiques)</term>
<term>Sarcome de Kaposi (anatomopathologie)</term>
<term>Sarcome de Kaposi (métabolisme)</term>
<term>Sarcome de Kaposi (virologie)</term>
<term>Sirolimus (pharmacologie)</term>
<term>Transactivateurs (métabolisme)</term>
<term>Virion (métabolisme)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="antagonists & inhibitors" xml:lang="en">
<term>Mechanistic Target of Rapamycin Complex 1</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Eukaryotic Initiation Factor-4F</term>
<term>Immediate-Early Proteins</term>
<term>Mechanistic Target of Rapamycin Complex 1</term>
<term>Trans-Activators</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Butyric Acid</term>
<term>Sirolimus</term>
</keywords>
<keywords scheme="MESH" qualifier="anatomopathologie" xml:lang="fr">
<term>Sarcome de Kaposi</term>
</keywords>
<keywords scheme="MESH" qualifier="antagonistes et inhibiteurs" xml:lang="fr">
<term>Complexe-1 cible mécanistique de la rapamycine</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Autophagy</term>
<term>Virus Activation</term>
<term>Virus Latency</term>
<term>Virus Replication</term>
</keywords>
<keywords scheme="MESH" qualifier="effets des médicaments et des substances chimiques" xml:lang="fr">
<term>Activation virale</term>
<term>Autophagie</term>
<term>Latence virale</term>
<term>Réplication virale</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Sarcoma, Kaposi</term>
<term>Virion</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Complexe-1 cible mécanistique de la rapamycine</term>
<term>Facteur-4F d'initiation eucaryote</term>
<term>Protéines précoces immédiates</term>
<term>Sarcome de Kaposi</term>
<term>Transactivateurs</term>
<term>Virion</term>
</keywords>
<keywords scheme="MESH" qualifier="pathology" xml:lang="en">
<term>Sarcoma, Kaposi</term>
</keywords>
<keywords scheme="MESH" qualifier="pharmacologie" xml:lang="fr">
<term>Acide butyrique</term>
<term>Sirolimus</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Herpèsvirus humain de type 8</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Herpesvirus 8, Human</term>
</keywords>
<keywords scheme="MESH" qualifier="virologie" xml:lang="fr">
<term>Sarcome de Kaposi</term>
</keywords>
<keywords scheme="MESH" qualifier="virology" xml:lang="en">
<term>Sarcoma, Kaposi</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Cell Line</term>
<term>Host-Pathogen Interactions</term>
<term>Humans</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Humains</term>
<term>Interactions hôte-pathogène</term>
<term>Lignée cellulaire</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Mechanistic target of rapamycin complex 1 (mTORC1) is a master regulator of cellular metabolism. In nutrient-rich environments, mTORC1 kinase activity stimulates protein synthesis to meet cellular anabolic demands. Under nutrient-poor conditions or under stress, mTORC1 is rapidly inhibited, global protein synthesis is arrested, and a cellular catabolic process known as autophagy is activated. Kaposi's sarcoma-associated herpesvirus (KSHV) encodes multiple proteins that stimulate mTORC1 activity or subvert autophagy, but precise roles for mTORC1 in different stages of KSHV infection remain incompletely understood. Here, we report that during latent and lytic stages of KSHV infection, chemical inhibition of mTORC1 caused eukaryotic initiation factor 4F (eIF4F) disassembly and diminished global protein synthesis, which indicated that mTORC1-mediated control of translation initiation was largely intact. We observed that mTORC1 was required for synthesis of the replication and transcription activator (RTA) lytic switch protein and reactivation from latency, but once early lytic gene expression had begun, mTORC1 was not required for genome replication, late gene expression, or the release of infectious progeny. Moreover, mTORC1 control of autophagy was dysregulated during lytic replication, whereby chemical inhibition of mTORC1 prevented ULK1 phosphorylation but did not affect autophagosome formation or rates of autophagic flux. Together, these findings suggest that mTORC1 is dispensable for viral protein synthesis and viral control of autophagy during lytic infection and that KSHV undermines mTORC1-dependent cellular processes during the lytic cycle to ensure efficient viral replication.
<b>IMPORTANCE</b>
All viruses require host cell machinery to synthesize viral proteins. A host cell protein complex known as mechanistic target of rapamycin complex 1 (mTORC1) is a master regulator of protein synthesis. Under nutrient-rich conditions, mTORC1 is active and promotes protein synthesis to meet cellular anabolic demands. Under nutrient-poor conditions or under stress, mTORC1 is rapidly inhibited, global protein synthesis is arrested, and a cellular catabolic process known as autophagy is activated. Kaposi's sarcoma-associated herpesvirus (KSHV) stimulates mTORC1 activity and utilizes host machinery to synthesize viral proteins. However, we discovered that mTORC1 activity was largely dispensable for viral protein synthesis, genome replication, and the release of infectious progeny. Likewise, during lytic replication, mTORC1 was no longer able to control autophagy. These findings suggest that KSHV undermines mTORC1-dependent cellular processes during the lytic cycle to ensure efficient viral replication.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">31375594</PMID>
<DateCompleted>
<Year>2020</Year>
<Month>06</Month>
<Day>15</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>06</Month>
<Day>15</Day>
</DateRevised>
<Article PubModel="Electronic-Print">
<Journal>
<ISSN IssnType="Electronic">1098-5514</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>93</Volume>
<Issue>21</Issue>
<PubDate>
<Year>2019</Year>
<Month>11</Month>
<Day>01</Day>
</PubDate>
</JournalIssue>
<Title>Journal of virology</Title>
<ISOAbbreviation>J Virol</ISOAbbreviation>
</Journal>
<ArticleTitle>Kaposi's Sarcoma-Associated Herpesvirus Lytic Replication Interferes with mTORC1 Regulation of Autophagy and Viral Protein Synthesis.</ArticleTitle>
<ELocationID EIdType="pii" ValidYN="Y">e00854-19</ELocationID>
<ELocationID EIdType="doi" ValidYN="Y">10.1128/JVI.00854-19</ELocationID>
<Abstract>
<AbstractText>Mechanistic target of rapamycin complex 1 (mTORC1) is a master regulator of cellular metabolism. In nutrient-rich environments, mTORC1 kinase activity stimulates protein synthesis to meet cellular anabolic demands. Under nutrient-poor conditions or under stress, mTORC1 is rapidly inhibited, global protein synthesis is arrested, and a cellular catabolic process known as autophagy is activated. Kaposi's sarcoma-associated herpesvirus (KSHV) encodes multiple proteins that stimulate mTORC1 activity or subvert autophagy, but precise roles for mTORC1 in different stages of KSHV infection remain incompletely understood. Here, we report that during latent and lytic stages of KSHV infection, chemical inhibition of mTORC1 caused eukaryotic initiation factor 4F (eIF4F) disassembly and diminished global protein synthesis, which indicated that mTORC1-mediated control of translation initiation was largely intact. We observed that mTORC1 was required for synthesis of the replication and transcription activator (RTA) lytic switch protein and reactivation from latency, but once early lytic gene expression had begun, mTORC1 was not required for genome replication, late gene expression, or the release of infectious progeny. Moreover, mTORC1 control of autophagy was dysregulated during lytic replication, whereby chemical inhibition of mTORC1 prevented ULK1 phosphorylation but did not affect autophagosome formation or rates of autophagic flux. Together, these findings suggest that mTORC1 is dispensable for viral protein synthesis and viral control of autophagy during lytic infection and that KSHV undermines mTORC1-dependent cellular processes during the lytic cycle to ensure efficient viral replication.
<b>IMPORTANCE</b>
All viruses require host cell machinery to synthesize viral proteins. A host cell protein complex known as mechanistic target of rapamycin complex 1 (mTORC1) is a master regulator of protein synthesis. Under nutrient-rich conditions, mTORC1 is active and promotes protein synthesis to meet cellular anabolic demands. Under nutrient-poor conditions or under stress, mTORC1 is rapidly inhibited, global protein synthesis is arrested, and a cellular catabolic process known as autophagy is activated. Kaposi's sarcoma-associated herpesvirus (KSHV) stimulates mTORC1 activity and utilizes host machinery to synthesize viral proteins. However, we discovered that mTORC1 activity was largely dispensable for viral protein synthesis, genome replication, and the release of infectious progeny. Likewise, during lytic replication, mTORC1 was no longer able to control autophagy. These findings suggest that KSHV undermines mTORC1-dependent cellular processes during the lytic cycle to ensure efficient viral replication.</AbstractText>
<CopyrightInformation>Copyright © 2019 Pringle et al.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Pringle</LastName>
<ForeName>Eric S</ForeName>
<Initials>ES</Initials>
<AffiliationInfo>
<Affiliation>Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Beatrice Hunter Cancer Research Institute, Halifax, Nova Scotia, Canada.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Robinson</LastName>
<ForeName>Carolyn-Ann</ForeName>
<Initials>CA</Initials>
<AffiliationInfo>
<Affiliation>Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>McCormick</LastName>
<ForeName>Craig</ForeName>
<Initials>C</Initials>
<Identifier Source="ORCID">0000-0003-2794-3722</Identifier>
<AffiliationInfo>
<Affiliation>Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada craig.mccormick@dal.ca.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Beatrice Hunter Cancer Research Institute, Halifax, Nova Scotia, Canada.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2019</Year>
<Month>10</Month>
<Day>15</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>J Virol</MedlineTA>
<NlmUniqueID>0113724</NlmUniqueID>
<ISSNLinking>0022-538X</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D039562">Eukaryotic Initiation Factor-4F</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D017874">Immediate-Early Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C417604">Rta protein, Human herpesvirus 8</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D015534">Trans-Activators</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>107-92-6</RegistryNumber>
<NameOfSubstance UI="D020148">Butyric Acid</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.11.1</RegistryNumber>
<NameOfSubstance UI="D000076222">Mechanistic Target of Rapamycin Complex 1</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>W36ZG6FT64</RegistryNumber>
<NameOfSubstance UI="D020123">Sirolimus</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D001343" MajorTopicYN="Y">Autophagy</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020148" MajorTopicYN="N">Butyric Acid</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002460" MajorTopicYN="N">Cell Line</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D039562" MajorTopicYN="N">Eukaryotic Initiation Factor-4F</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019288" MajorTopicYN="N">Herpesvirus 8, Human</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D054884" MajorTopicYN="N">Host-Pathogen Interactions</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017874" MajorTopicYN="N">Immediate-Early Proteins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000076222" MajorTopicYN="N">Mechanistic Target of Rapamycin Complex 1</DescriptorName>
<QualifierName UI="Q000037" MajorTopicYN="N">antagonists & inhibitors</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012514" MajorTopicYN="N">Sarcoma, Kaposi</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000473" MajorTopicYN="N">pathology</QualifierName>
<QualifierName UI="Q000821" MajorTopicYN="Y">virology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020123" MajorTopicYN="N">Sirolimus</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015534" MajorTopicYN="N">Trans-Activators</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014771" MajorTopicYN="N">Virion</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014775" MajorTopicYN="Y">Virus Activation</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017735" MajorTopicYN="N">Virus Latency</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014779" MajorTopicYN="N">Virus Replication</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">KSHV</Keyword>
<Keyword MajorTopicYN="Y">autophagy</Keyword>
<Keyword MajorTopicYN="Y">eIF4F</Keyword>
<Keyword MajorTopicYN="Y">lytic</Keyword>
<Keyword MajorTopicYN="Y">mTORC1</Keyword>
<Keyword MajorTopicYN="Y">translation initiation</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2019</Year>
<Month>05</Month>
<Day>21</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2019</Year>
<Month>07</Month>
<Day>30</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2019</Year>
<Month>8</Month>
<Day>4</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>6</Month>
<Day>17</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2019</Year>
<Month>8</Month>
<Day>4</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">31375594</ArticleId>
<ArticleId IdType="pii">JVI.00854-19</ArticleId>
<ArticleId IdType="doi">10.1128/JVI.00854-19</ArticleId>
<ArticleId IdType="pmc">PMC6803247</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Nature. 2012 May 02;485(7396):109-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22552098</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 1999 Nov;73(11):9348-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10516043</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 2004 Aug 1;325(2):225-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15246263</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO Rep. 2013 Feb;14(2):143-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23337627</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2014 Jan;88(2):1281-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24227836</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Microbiol. 2017 Aug;25(8):648-661</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28259385</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2009 May 1;284(18):12297-305</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19258318</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2003 Jun;77(11):6474-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12743304</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Cell Biol. 2019 Jan;21(1):63-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30602761</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>N Engl J Med. 2005 Mar 31;352(13):1317-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15800227</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2018 Apr 16;14(4):e1006995</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29659627</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Blood. 1995 Aug 15;86(4):1276-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7632932</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Immunol. 2013 Jan 07;3:401</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23316192</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cancer Cell. 2015 Dec 14;28(6):758-772</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26777415</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2016 Jul 12;113(28):7876-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27342859</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cancer Cell. 2007 Mar;11(3):245-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17349582</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2016 Aug 12;90(17):7657-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27307571</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol Methods. 2011 Jun;174(1-2):12-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21419799</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2018 Dec 7;430(24):4874-4890</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30359581</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Microbiol. 2018 Jan;3(1):108-120</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29109479</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2019 Jun 13;177(7):1682-1699</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31199916</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2010 Feb 12;6(2):e1000777</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20169190</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Methods. 2012 Jun 28;9(7):676-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22743772</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cancer Cell. 2007 Jul;12(1):9-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17613433</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2018 Nov 27;92(24):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30282708</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Cell Biol. 2010 Nov;12(11):1035-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20890297</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oncogene. 2014 May 1;33(18):2405-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23708663</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2011 Sep;85(18):9369-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21734039</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>MBio. 2019 Feb 19;10(1):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30782662</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2009 Mar;5(3):e1000334</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19300492</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Clin Invest. 2019 Jul 15;129(8):3310-3323</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31305263</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Cancer. 2013 Apr 15;132(8):1954-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22987579</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Host Microbe. 2013 Apr 17;13(4):429-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23601105</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Soc Trans. 2015 Oct;43(5):763-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26517881</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>N Engl J Med. 1995 May 4;332(18):1186-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7700311</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Biochem. 2014;83:779-812</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24499181</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2010 Jun 17;465(7300):942-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20526321</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2005 Sep 23;122(6):927-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16179260</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Clin Invest. 2004 Jan;113(1):124-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14702116</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Host Microbe. 2007 Mar 15;1(1):23-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18005679</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>MBio. 2014 Sep 23;5(5):e01633-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25249280</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Biol. 2019 Jan 4;17(1):e2006926</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30608919</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol Methods. 2008 Dec;154(1-2):160-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18755221</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2013 Nov;87(22):12499-503</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24027317</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2014 Feb;88(3):1473-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24198422</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2003 Apr;77(7):4205-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12634378</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Virol. 2016 Sep 29;3(1):283-307</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27501262</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1998 Sep 1;95(18):10866-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9724796</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2017 Nov 2;68(3):504-514.e7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29107534</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Blood. 2007 Mar 1;109(5):2165-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17082322</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Host Microbe. 2014 Mar 12;15(3):266-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24629334</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cancer Cell. 2006 Aug;10(2):133-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16904612</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Cell Biol. 2013 Jul;15(7):741-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23685627</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Host Microbe. 2010 Jul 22;8(1):100-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20638646</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2011 Jan 14;6(1):e14535</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21264294</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2012 May 06;486(7401):126-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22678294</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2015 Jan 08;11(1):e1004597</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25569678</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Virol. 2015 Nov;2(1):311-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26958918</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2009 Apr;20(7):1992-2003</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19225151</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2015 Oct 2;290(40):24091-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26324716</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2004 Mar 12;13(5):713-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15023341</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Sci. 2012 Oct 15;125(Pt 20):4740-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22797916</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO Rep. 2017 Dec;18(12):2197-2218</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29079657</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cancer Res. 2013 Apr 1;73(7):2235-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23382046</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2017 Jul 27;91(16):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28592530</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Methods. 2009 Apr;6(4):275-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19305406</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1994 Dec 16;266(5192):1865-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7997879</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2009 Mar 20;284(12):8023-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19150980</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2008 Feb;82(4):1838-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18057234</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2009 Apr;20(7):1981-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19211835</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2018 Sep 13;14(9):e1007267</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30212584</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Cell Biol. 2009 Nov;11(11):1355-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19838173</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2013 Jul 26;341(6144):1236566</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23888043</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Canada</li>
</country>
<region>
<li>Alberta</li>
</region>
<settlement>
<li>Calgary</li>
</settlement>
<orgName>
<li>Université de Calgary</li>
</orgName>
</list>
<tree>
<country name="Canada">
<noRegion>
<name sortKey="Pringle, Eric S" sort="Pringle, Eric S" uniqKey="Pringle E" first="Eric S" last="Pringle">Eric S. Pringle</name>
</noRegion>
<name sortKey="Mccormick, Craig" sort="Mccormick, Craig" uniqKey="Mccormick C" first="Craig" last="Mccormick">Craig Mccormick</name>
<name sortKey="Mccormick, Craig" sort="Mccormick, Craig" uniqKey="Mccormick C" first="Craig" last="Mccormick">Craig Mccormick</name>
<name sortKey="Pringle, Eric S" sort="Pringle, Eric S" uniqKey="Pringle E" first="Eric S" last="Pringle">Eric S. Pringle</name>
<name sortKey="Robinson, Carolyn Ann" sort="Robinson, Carolyn Ann" uniqKey="Robinson C" first="Carolyn-Ann" last="Robinson">Carolyn-Ann Robinson</name>
<name sortKey="Robinson, Carolyn Ann" sort="Robinson, Carolyn Ann" uniqKey="Robinson C" first="Carolyn-Ann" last="Robinson">Carolyn-Ann Robinson</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/RapamycinFungusV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000307 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000307 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    RapamycinFungusV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:31375594
   |texte=   Kaposi's Sarcoma-Associated Herpesvirus Lytic Replication Interferes with mTORC1 Regulation of Autophagy and Viral Protein Synthesis.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:31375594" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a RapamycinFungusV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Thu Nov 19 21:55:41 2020. Site generation: Thu Nov 19 22:00:39 2020